Retour à Première Spécialité

L’expression du patrimoine génétique

Capacités :
Calculer le nombre de combinaisons possibles de séquences de n acides aminés quand n grandit

Fichier Combi_aa.py

 Éditeur

nbre_aa=int(input(« Entrer le nombre d’acides aminés existants : »))

# demande à l’élève d’entrer le nombre d’acides aminés qui existe

for n in range(1,101) :

# cette syntaxe correspond à une boucle bornée : ce programme répète une ou plusieurs instructions un nombre défini de fois (ici 100 fois)

# ici la variable n prend les valeurs entières de 1 à 100 (101-1=100) pour que la boucle se répète 100 fois

# range(x,y) où x et y sont des entiers et fait prendre à la variable les valeurs entières de x à y-1

print(n,nbre_aa**n)

# il n’existe pas d’instruction pour définir la fin de la boucle. C’est l’indentation (décalage vers la droite) d’une ou plusieurs lignes qui permet de marquer la fin de la boucle

# affiche dans la console chaque valeur de n, le résultat du nombre d’acides aminés existants (20) élevé à la puissance n

Console

>>>
1 20
2 400
3 8000
4 160000
5 3200000
6 64000000
7 1280000000
8 25600000000
9 512000000000
10 10240000000000
11 204800000000000
12 4096000000000000
13 81920000000000000
14 1638400000000000000
15 32768000000000000000
16 655360000000000000000
17 13107200000000000000000
18 262144000000000000000000
19 5242880000000000000000000
20 104857600000000000000000000
21 2097152000000000000000000000
22 41943040000000000000000000000
23 838860800000000000000000000000
24 16777216000000000000000000000000
25 335544320000000000000000000000000
26 6710886400000000000000000000000000
27 134217728000000000000000000000000000
28 2684354560000000000000000000000000000
29 53687091200000000000000000000000000000
30 1073741824000000000000000000000000000000
31 21474836480000000000000000000000000000000
32 429496729600000000000000000000000000000000
33 8589934592000000000000000000000000000000000
34 171798691840000000000000000000000000000000000
35 3435973836800000000000000000000000000000000000
36 68719476736000000000000000000000000000000000000
37 1374389534720000000000000000000000000000000000000
38 27487790694400000000000000000000000000000000000000
39 549755813888000000000000000000000000000000000000000
40 10995116277760000000000000000000000000000000000000000
41 219902325555200000000000000000000000000000000000000000
42 4398046511104000000000000000000000000000000000000000000
43 87960930222080000000000000000000000000000000000000000000
44 1759218604441600000000000000000000000000000000000000000000
45 35184372088832000000000000000000000000000000000000000000000
46 703687441776640000000000000000000000000000000000000000000000
47 14073748835532800000000000000000000000000000000000000000000000
48 281474976710656000000000000000000000000000000000000000000000000
49 5629499534213120000000000000000000000000000000000000000000000000
50 112589990684262400000000000000000000000000000000000000000000000000
51 2251799813685248000000000000000000000000000000000000000000000000000
52 45035996273704960000000000000000000000000000000000000000000000000000
53 900719925474099200000000000000000000000000000000000000000000000000000
54 18014398509481984000000000000000000000000000000000000000000000000000000
55 360287970189639680000000000000000000000000000000000000000000000000000000
56 7205759403792793600000000000000000000000000000000000000000000000000000000
57 144115188075855872000000000000000000000000000000000000000000000000000000000
58 2882303761517117440000000000000000000000000000000000000000000000000000000000
59 57646075230342348800000000000000000000000000000000000000000000000000000000000
60 1152921504606846976000000000000000000000000000000000000000000000000000000000000
61 23058430092136939520000000000000000000000000000000000000000000000000000000000000
62 461168601842738790400000000000000000000000000000000000000000000000000000000000000
63 9223372036854775808000000000000000000000000000000000000000000000000000000000000000
64 184467440737095516160000000000000000000000000000000000000000000000000000000000000000
65 3689348814741910323200000000000000000000000000000000000000000000000000000000000000000
66 73786976294838206464000000000000000000000000000000000000000000000000000000000000000000
67 1475739525896764129280000000000000000000000000000000000000000000000000000000000000000000
68 29514790517935282585600000000000000000000000000000000000000000000000000000000000000000000
69 90295810358705651712000000000000000000000000000000000000000000000000000000000000000000000
70 11805916207174113034240000000000000000000000000000000000000000000000000000000000000000000000
71 236118324143482260684800000000000000000000000000000000000000000000000000000000000000000000000
72 4722366482869645213696000000000000000000000000000000000000000000000000000000000000000000000000
73 94447329657392904273920000000000000000000000000000000000000000000000000000000000000000000000000
74 1888946593147858085478400000000000000000000000000000000000000000000000000000000000000000000000000
75 37778931862957161709568000000000000000000000000000000000000000000000000000000000000000000000000000
76 755578637259143234191360000000000000000000000000000000000000000000000000000000000000000000000000000
77 15111572745182864683827200000000000000000000000000000000000000000000000000000000000000000000000000000
78 302231454903657293676544000000000000000000000000000000000000000000000000000000000000000000000000000000
79 6044629098073145873530880000000000000000000000000000000000000000000000000000000000000000000000000000000
80 120892581961462917470617600000000000000000000000000000000000000000000000000000000000000000000000000000000
81 2417851639229258349412352000000000000000000000000000000000000000000000000000000000000000000000000000000000
82 48357032784585166988247040000000000000000000000000000000000000000000000000000000000000000000000000000000000
83 967140655691703339764940800000000000000000000000000000000000000000000000000000000000000000000000000000000000
84 19342813113834066795298816000000000000000000000000000000000000000000000000000000000000000000000000000000000000
85 386856262276681335905976320000000000000000000000000000000000000000000000000000000000000000000000000000000000000
86 7737125245533626718119526400000000000000000000000000000000000000000000000000000000000000000000000000000000000000
87 154742504910672534362390528000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
88 3094850098213450687247810560000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
89 61897001964269013744956211200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
90 1237940039285380274899124224000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
91 24758800785707605497982484480000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
92 495176015714152109959649689600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
93 9903520314283042199192993792000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
94 198070406285660843983859875840000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
95 3961408125713216879677197516800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
96 79228162514264337593543950336000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
97 1584563250285286751870879006720000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
98 31691265005705735037417580134400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
99 633825300114114700748351602688000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
100 12676506002282294014967032053760000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
>>>

Proposition pédagogique pour les débutants et les initiés

Faire adapter le script précédent pour calculer le nombre de combinaisons possibles pour une longueur d’acides aminés n allant de 1 à 100.