Capacités :
Calculer le nombre de combinaisons possibles de séquences de n acides aminés quand n grandit
Fichier Combi_aa.py
Éditeur
nbre_aa=int(input(« Entrer le nombre d’acides aminés existants : »)) # demande à l’élève d’entrer le nombre d’acides aminés qui existe for n in range(1,101) : # cette syntaxe correspond à une boucle bornée : ce programme répète une ou plusieurs instructions un nombre défini de fois (ici 100 fois) # ici la variable n prend les valeurs entières de 1 à 100 (101-1=100) pour que la boucle se répète 100 fois # range(x,y) où x et y sont des entiers et fait prendre à la variable les valeurs entières de x à y-1 print(n,nbre_aa**n) # il n’existe pas d’instruction pour définir la fin de la boucle. C’est l’indentation (décalage vers la droite) d’une ou plusieurs lignes qui permet de marquer la fin de la boucle # affiche dans la console chaque valeur de n, le résultat du nombre d’acides aminés existants (20) élevé à la puissance n |
Console
>>> 1 20 2 400 3 8000 4 160000 5 3200000 6 64000000 7 1280000000 8 25600000000 9 512000000000 10 10240000000000 11 204800000000000 12 4096000000000000 13 81920000000000000 14 1638400000000000000 15 32768000000000000000 16 655360000000000000000 17 13107200000000000000000 18 262144000000000000000000 19 5242880000000000000000000 20 104857600000000000000000000 21 2097152000000000000000000000 22 41943040000000000000000000000 23 838860800000000000000000000000 24 16777216000000000000000000000000 25 335544320000000000000000000000000 26 6710886400000000000000000000000000 27 134217728000000000000000000000000000 28 2684354560000000000000000000000000000 29 53687091200000000000000000000000000000 30 1073741824000000000000000000000000000000 31 21474836480000000000000000000000000000000 32 429496729600000000000000000000000000000000 33 8589934592000000000000000000000000000000000 34 171798691840000000000000000000000000000000000 35 3435973836800000000000000000000000000000000000 36 68719476736000000000000000000000000000000000000 37 1374389534720000000000000000000000000000000000000 38 27487790694400000000000000000000000000000000000000 39 549755813888000000000000000000000000000000000000000 40 10995116277760000000000000000000000000000000000000000 41 219902325555200000000000000000000000000000000000000000 42 4398046511104000000000000000000000000000000000000000000 43 87960930222080000000000000000000000000000000000000000000 44 1759218604441600000000000000000000000000000000000000000000 45 35184372088832000000000000000000000000000000000000000000000 46 703687441776640000000000000000000000000000000000000000000000 47 14073748835532800000000000000000000000000000000000000000000000 48 281474976710656000000000000000000000000000000000000000000000000 49 5629499534213120000000000000000000000000000000000000000000000000 50 112589990684262400000000000000000000000000000000000000000000000000 51 2251799813685248000000000000000000000000000000000000000000000000000 52 45035996273704960000000000000000000000000000000000000000000000000000 53 900719925474099200000000000000000000000000000000000000000000000000000 54 18014398509481984000000000000000000000000000000000000000000000000000000 55 360287970189639680000000000000000000000000000000000000000000000000000000 56 7205759403792793600000000000000000000000000000000000000000000000000000000 57 144115188075855872000000000000000000000000000000000000000000000000000000000 58 2882303761517117440000000000000000000000000000000000000000000000000000000000 59 57646075230342348800000000000000000000000000000000000000000000000000000000000 60 1152921504606846976000000000000000000000000000000000000000000000000000000000000 61 23058430092136939520000000000000000000000000000000000000000000000000000000000000 62 461168601842738790400000000000000000000000000000000000000000000000000000000000000 63 9223372036854775808000000000000000000000000000000000000000000000000000000000000000 64 184467440737095516160000000000000000000000000000000000000000000000000000000000000000 65 3689348814741910323200000000000000000000000000000000000000000000000000000000000000000 66 73786976294838206464000000000000000000000000000000000000000000000000000000000000000000 67 1475739525896764129280000000000000000000000000000000000000000000000000000000000000000000 68 29514790517935282585600000000000000000000000000000000000000000000000000000000000000000000 69 90295810358705651712000000000000000000000000000000000000000000000000000000000000000000000 70 11805916207174113034240000000000000000000000000000000000000000000000000000000000000000000000 71 236118324143482260684800000000000000000000000000000000000000000000000000000000000000000000000 72 4722366482869645213696000000000000000000000000000000000000000000000000000000000000000000000000 73 94447329657392904273920000000000000000000000000000000000000000000000000000000000000000000000000 74 1888946593147858085478400000000000000000000000000000000000000000000000000000000000000000000000000 75 37778931862957161709568000000000000000000000000000000000000000000000000000000000000000000000000000 76 755578637259143234191360000000000000000000000000000000000000000000000000000000000000000000000000000 77 15111572745182864683827200000000000000000000000000000000000000000000000000000000000000000000000000000 78 302231454903657293676544000000000000000000000000000000000000000000000000000000000000000000000000000000 79 6044629098073145873530880000000000000000000000000000000000000000000000000000000000000000000000000000000 80 120892581961462917470617600000000000000000000000000000000000000000000000000000000000000000000000000000000 81 2417851639229258349412352000000000000000000000000000000000000000000000000000000000000000000000000000000000 82 48357032784585166988247040000000000000000000000000000000000000000000000000000000000000000000000000000000000 83 967140655691703339764940800000000000000000000000000000000000000000000000000000000000000000000000000000000000 84 19342813113834066795298816000000000000000000000000000000000000000000000000000000000000000000000000000000000000 85 386856262276681335905976320000000000000000000000000000000000000000000000000000000000000000000000000000000000000 86 7737125245533626718119526400000000000000000000000000000000000000000000000000000000000000000000000000000000000000 87 154742504910672534362390528000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 88 3094850098213450687247810560000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 89 61897001964269013744956211200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 90 1237940039285380274899124224000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 91 24758800785707605497982484480000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 92 495176015714152109959649689600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 93 9903520314283042199192993792000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 94 198070406285660843983859875840000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 95 3961408125713216879677197516800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 96 79228162514264337593543950336000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 97 1584563250285286751870879006720000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 98 31691265005705735037417580134400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 99 633825300114114700748351602688000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 100 12676506002282294014967032053760000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 >>> |
Proposition pédagogique pour les débutants et les initiés
Faire adapter le script précédent pour calculer le nombre de combinaisons possibles pour une longueur d’acides aminés n allant de 1 à 100.