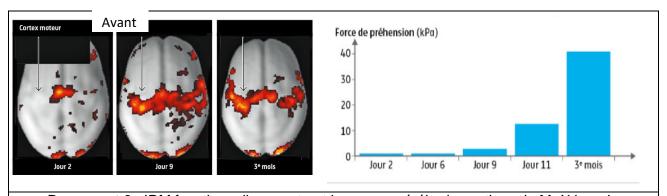
Sciences de la vie et de la Terre Epreuve de spécialité du second groupe

THEME 3-1 TYPE B EXERCICE 4

Thématique : Corps humain et santé

Chapitre : Cerveau et mouvement volontaire


Questions de type B

Mr X est victime d'un AVC suite auquel il est pris en charge et soumis à des examens permettant de localiser sa lésion (document 1a). On observe chez lui, une paralysie de la partie droite du corps.

Par la suite, il est soumis à une rééducation pendant plusieurs mois dans le but de recouvrer ses mouvements, les effets de la celle-ci sont évalués à différents temps grâce à de nouveaux IRMf (document 2).

Document 1 : IRM anatomique montrant plusieurs lésions cérébrales zones consécutives à l'AVC de Mr X (a) et IRM fonctionnel d'un témoin sain (b) qui bouge la main droite (D'après Ed Nathan Term ENSEIGNEMENT DE SPÉCIALITÉ Ed 2020)

Document 2: IRM fonctionnelles montrant les zones cérébrales actives de Mr X lors de mouvements de la main droite au cours de sa rééducation et évolution de la force de préhension de sa main droite (40kPa correspond à une force normale)

D'après Ed Nathan Term ENSEIGNEMENT DE SPÉCIALITÉ Ed 2020

A partir de l'exploitation des documents fournis et de vos connaissances, indiquez si la rééducation suivie par Mr X s'avère efficace dans la récupération d'une certaine motricité de sa main droite et sur quelle capacité cérébrale elle s'appuie.

Eléments de correction.

Données issues des documents Données issues des	 AVC a généré des lésions visibles sur l'IRMa au niveau du cortex gauche responsable de la motricité du côté droit du corps La rééducation montre sur les IRMf que l'activité cérébrale du cortex gauche réapparait progressivement mais, elle se retrouve aussi au niveau moteur droit Suite à l'AVC, la force de préhension de sa main droite est quasi nulle 3 mois après la rééducation, la force de préhension est redevenue normale (40 kPa) Aires motrices spécialisées
connaissances	Plasticité cérébrale
Interprétation des données	Rééducation permet une réorganisation des neurones, de nouveaux circuits se mettent en place (nouvelles connexions synaptiques dans des zones dédiées à d'autres fonctions précédemment)
Conclusion	Le cerveau est en perpétuel remodelage suite aux expériences vécues (volontaires/apprentissage ou non/accidents) La plasticité permet la récupération de fonctions perdues tout au long de la vie dans certaines limites. Rééducation ici efficace.