

Born'Innov Projet inter-degrés : Journée de l'Innovation

Découverte des filières technologiques au Lycée de Blaye

Objectif du projet :

Favoriser la liaison collège-lycée en proposant une journée immersive autour de la création numérique et des technologies de fabrication, à destination des élèves de 4e ou 3e, dans le but de découvrir les filières technologiques proposées au lycée.

Public cible :

- Élèves de 4e ou 3e des collèges de la ZAP de Blaye
- Élèves de lycée (filières technologiques) en rôle de "coachs"

Lieu:

Lycée de Blaye - Ateliers et salles spécialisées (fablab, salle informatique...)

Durée :

1 journée (prévoir 6h effectives d'ateliers)

Sommaire

- Partie 1 Présentation du projet dans son contexte
- Partie 2 Cahier des charges Projet Mini Borne d'Arcade
- Partie 3 Fiche Élève Projet Mini Borne d'Arcade
- Partie 4 Fiche d'aide Modélisation 3D pour la borne d'arcade
- Partie 5 Fiche d'aide Programmation d'un jeu rétro
- Partie 6 Revue de projet Présentation orale devant un jury

Partie 1 - Présentation du projet dans son contexte

1.1 Contenu du projet : Création d'une mini borne d'arcade

Chaque groupe de 4 à 5 collégiens, encadré par un binôme de lycéens coachs :

- 1. Étudiera un cahier des charges technique et créatif
- 2. Concevra une mini borne d'arcade personalisée avec un design cohérent avec leur mini-jeu
- **3. Programmera un mini-jeu rétro** via ArcadeMakeCode (type PacMan, casse-brique, etc.)
- 4. Découpera en atelier les éléments de la borne à la découpeuse laser
- 5. Assemblera l'ensemble : structure, écran, Raspberry Pi, boutons, joystick
- 6. Testera le jeu sur la borne fonctionnelle
- 7. Présentation à l'oral sous la forme d'une revue de projet devant un jury

1.2 Compétences mises en œuvre (extraites du programme de Technologie collège) :

- Analyser un cahier des charges, y apporter des modifications si nécessaires
- Modéliser une solution technique en 3D (outil numérique)
- **Programmer un objet numérique** interactif (jeu vidéo rétro)
- Réaliser et valider un prototype en équipe
- Collaborer et s'exprimer dans un cadre technique partagé

1.3 Intérêts pédagogiques :

- Découverte concrète des formations technologiques du lycée (STI2D, SIN, etc.)
- Travail inter-degré valorisant pour les lycéens et motivant pour les collégiens
- Acquisition de compétences transversales : créativité, coopération, expression orale

Partie 2 - Cahier des charges – Projet Mini Borne d'Arcade

2.1 Besoin à satisfaire

Concevoir, fabriquer et tester une mini borne d'arcade personnalisée intégrant un jeu vidéo rétro réalisé avec <u>ArcadeMakeCode</u>. Le produit final doit être fonctionnel, esthétique et représentatif du thème choisi par le groupe.

2.2 Fonctions du produit

Fonction	Description
F1 – Jouer	Permettre à un utilisateur de jouer au mini-jeu sur écran avec joystick et boutons
F2 – Support	Offrir une structure stable, compacte, facilement transportable
F3 – Signalétique	Mettre en valeur le thème du jeu par des éléments visuels sur la borne
F4 – Accessibilité	L'utilisateur doit pouvoir comprendre et utiliser la borne sans notice complexe

2.3 Contraintes

Domaine	Contraintes
Matériaux	Plaques MDF (épaisseur 3mm à 5mm), découpées au laser
Logiciel	Jeu programmé avec ArcadeMakeCode (2 à 4 scènes, un objectif, une difficulté croissante)
Dimensions	Base max 25cm x 25cm - Hauteur max 35cm
Matériel embarqué	Raspberry Pi, écran HDMI 5"-7", carte microSD, boutons arcade (4), joystick, alimentation USB
Assemblage	Fixations simples (colle à bois ou vis) – accès facile à l'intérieur
Temps	Projet réalisable en moins de 6h (conception, découpe, assemblage, test inclus)
Coût	Les pièces hors bois sont standardisées et mises à disposition (pas de création sur-mesure)

2.4 Cotation fonctionnelle (exemple de découpe laser)

Pièce	Cotation (mm) (a déterminer)	Quantité	Remarques
Face avant	250 x 100	1	Accueille l'écran et les boutons
Face arrière	250 x 100	1	Avec découpe d'accès à l'intérieur
Côtés gauche/droit	250 x 300	2	Découpe personnalisable selon thème
Dessus / dessous	250 x 100	2	Inclure trous de ventilation si besoin
Inclinaison écran	200 x 100 (pente 15°)	1	Optionnel selon design retenu

2.5 Critères de réussite

Critère	Seuil minimal	Niveau attendu
Fonctionnement du jeu	Le jeu démarre et réagit aux commandes	Jeu jouable et fluide
Design de la borne	Présence des 6 pièces et assemblage stable	Thème visuel cohérent et personnalisé
Qualité du code	Au moins 2 scènes, 1 ennemi, 1 objectif clair	Logique de difficulté et interface utilisateur
Travail collaboratif	Répartition des tâches équilibrée	Présentation orale fluide et structurée
Respect du temps imparti	Projet terminé en 6h	Temps bien géré par le groupe

Partie 3 - Fiche Élève – Projet Mini Borne d'Arcade

3.1 Objectif du projet

Concevoir, fabriquer et tester une mini borne d'arcade personnalisée, équipée d'un jeu vidéo rétro programmé avec **ArcadeMakeCode**, sur **Raspberry Pi**.

3.2 Organisation du groupe

Groupes de 4 à 5 élèves Coachés par 1 ou 2 lycéens Répartition des rôles :

- Design de la borne
- Programmation du jeu
- Découpe et assemblage
- Communication & présentation

3.3 Étapes du projet

- 1. Lire et comprendre le cahier des charges
- 2. Choisir un thème de jeu (ex. : Pac-Man, casse-briques...)
- 3. Dessiner la borne (forme et décorations)
- 4. Créer la maquette 3D à découper (logiciel fourni)
- 5. Programmer le mini-jeu rétro
- 6. Découper au laser les pièces en bois
- 7. Assembler et tester la borne avec Raspberry Pi

3.4 Matériaux & Outils

- MDF 3 à 5 mm (découpe laser)
- Raspberry Pi avec écran, boutons arcade, joystick
- Logiciel MakeCode Arcade
- Poste de fabrication numérique

3.5 Ce que votre borne doit faire

- Jouer à un jeu rétro simple
- Avoir un design en lien avec votre jeu
- Être bien assemblée et stable
- Fonctionner sans aide extérieure

3.6 À ne pas oublier

- Travail d'équipe : chacun a un rôle
- Créativité : votre borne doit refléter votre jeu
- Organisation: 6 heures maximum pour tout faire!
- Présentation finale : chaque groupe présentera sa borne

3.7 En fin de journée, vous devrez :

- Avoir un jeu fonctionnel et amusant
- Une borne découpée et montée
- Une déco en lien avec le jeu
- Être prêts à **expliquer** votre projet à un jury/visiteur

Partie 4 - Fiche d'aide – Modélisation 3D pour la borne d'arcade

4.1 Objectif du projet

Créer en 3D les différentes pièces de votre borne d'arcade pour pouvoir les découper au laser dans du bois MDF.

4.2 Outil de modélisation recommandé

- **Tinkercad** (en ligne, simple et gratuit)
- Ou tout autre logiciel compatible export SVG/DXF (Fusion 360, FreeCAD...)
- Inkscape ...

4.3 Critères de réussite

Pièce	Dimensions max (en mm) (à définir)	Détails
Face avant	250 x 100	Doit accueillir l'écran, les boutons et le joystick
Face arrière	250 x 100	Prévoir une trappe ou des trous pour accéder à l'intérieur
Côtés (x2)	250 x 300	Forme libre : peut refléter votre thème (PacMan, Mario)
Dessus / dessous	250 x 100	Forme rectangulaire classique
Support écran incliné	~200 x 100	Optionnel – selon l'ergonomie souhaitée

⚠ L'épaisseur du bois est de 3 mm (à respecter pour les assemblages).

4.4 Conseils pour la conception

À faire :

- Dessiner chaque pièce à plat (vue de dessus)
- Indiquer les emplacements pour les boutons, écran et joystick
- Utiliser des formes simples pour démarrer (rectangle, cercle, trapèze...)
- Prévoir des encoches (tenons/mortaises) si montage par emboîtement
- Exporter en format .SVG ou .DXF pour la découpe laser

X À éviter :

- Ne pas modéliser des volumes 3D complets (la découpeuse lit des tracés 2D)
- Ne pas oublier de laisser des marges autour de l'écran et des composants
- Ne pas multiplier les petites formes décoratives difficiles à découper

4.5 Astuces de design

- Ajoutez un logo ou un motif en rapport avec votre jeu
- Les trous pour les boutons ont un diamètre standard de 24 mm
- Vous pouvez personnaliser les formes latérales pour évoquer un personnage ou un univers rétro

4.6 Une fois les pièces prêtes...

- Vérifiez les dimensions
- Nommez clairement chaque pièce (face_avant.svg, côté_gauche.svg...)
- Transférez-les à l'équipe technique pour la découpe

Partie 5 - Fiche d'aide – Programmation d'un jeu rétro

5.1 Objectif

Créer un mini jeu rétro avec **MakeCode Arcade**, simple, jouable, et amusant, à intégrer dans votre mini borne d'arcade.

5.2 Outil de programmation

- Accès gratuit en ligne : https://arcade.makecode.com
- Mode Blocs (visuel) recommandé pour débuter
- Possibilité de passer en **JavaScript** pour les lycéens

5.3 Structure de base du jeu

Voici les éléments obligatoires à intégrer :

Eléments	Exemples
Personnage principal (sprite)	Héros : Pac-Man, vaisseau, cube, animal
🕹 Contrôles	Se déplace avec les flèches ou joystick
⊚ Objectif	Ramasser, éviter, détruire, atteindre une cible
Obstacles ou ennemis	Balle, fantôme, ennemi mobile, mur
Collision et conséquences	Perte de points, redémarrage, disparition d'objets
Score ou chronomètre	Affiché à l'écran pendant le jeu
Scène ou niveau	Créer au moins 1 niveau avec un fond de décor personnalisé

5.4 Étapes guidées pour créer ton jeu

1. Créer le héros

Créer sprite du joueur de type Player → Dessine ton personnage en pixel art (16x16 ou 32x32)

2. Contrôler le personnage

Déplacer le sprite du joueur avec les flèches

3. Créer un ennemi ou un objet

Créer sprite de type Ennemi / Aliment / Objet Placer dans un niveau

4. Ajouter une collision

Quand le sprite du joueur touche l'objet \rightarrow Ajoute un effet, augmente le score, ou déclenche un événement

5. Créer un niveau

Définir la scène / le fond / les murs → Utilise l'éditeur de tuiles pour dessiner le terrain

6. Ajouter un score ou un compte à rebours

changer score de +1 ou démarrer compte à rebours

7. Lancer le jeu

Quand A est pressé → Démarrer le jeu

5.5 Astuces

- Commence simple : un joueur, un but, un obstacle
- Teste régulièrement ton jeu
- Personnalise les sons, les images, les effets
- Utilise les exemples et tutoriels disponibles dans MakeCode pour t'inspirer

5.6 À la fin de la journée ton jeu doit :

- Se lancer automatiquement avec le Raspberry Pi
- Être jouable avec joystick et boutons arcade
- Avoir un objectif clair et un score visible
- Être fun, lisible, et cohérent avec le design de ta borne

Partie 6 - Revue de projet – Présentation orale devant un jury

6.1 Durée

Durée recommandée de 5 à 7 minutes par groupe (3 min d'exposé – 2 min de démonstration – 2 min de questions)

6.2 Objectifs pédagogiques

- S'exprimer clairement à l'oral devant un public
- Argumenter des choix techniques, esthétiques, fonctionnels
- Présenter un projet technique en équipe
- Prendre du recul : ce qui a bien fonctionné, ce qui aurait pu être amélioré

6.3 Composition du jury

- 1 enseignant de collège (Technologie)
- 1 ou 2 enseignants de lycée (STI2D, SIN...)
- Éventuellement un intervenant extérieur (chef de travaux, parents, etc.)

6.4 Contenu de la présentation orale

Voici un plan simple à suivre par les élèves :

1. Introduction (nom du groupe, thème du jeu)

« Bonjour, nous sommes le groupe X, nous avons créé une borne d'arcade sur le thème de ... »

2. Présentation du jeu vidéo

- Nom et objectif du jeu
- Mécanique de jeu (comment on joue ?)
- Ce qu'ils ont appris / choisi de programmer

3. Présentation de la borne

- Idée du design (lien avec le thème)
- Forme des plaques, découpe laser, choix esthétiques
- Assemblage et tests

4. Organisation du groupe

- Répartition des rôles
- Difficultés rencontrées et solutions trouvées
- Ce dont ils sont fiers

5. Démonstration

- Lancer le jeu sur la borne
- Montrer le gameplay
- Interaction avec le jury

6. Démonstration

« Ce projet nous a permis de découvrir... »,

• « Si on avait eu plus de temps, on aurait aimé... »

6.5 Grille d'évaluation possible - jury

Critère	Barème
Qualité de la présentation orale (clarté, posture, voix)	/5
Argumentation technique (choix, vocabulaire, justification)	/5
Qualité de la démonstration (jeu fonctionnel, explication claire)	/5
Travail d'équipe (répartition, coopération visible)	/5
Créativité / originalité du projet	/5
Capacité à analyser (recul, points d'amélioration)	/5

Total: /30