

Notice d'utilisation de la fraiseuse à commande numérique Charlyrobot

Sommaire

1.	Cas d'utilisations	р 2-3
2.	Description du matériel	р 4-5
3.	Mettre en oeuvre un usinage :	р 6-16
	Charlygraal v5 CAO + FAO	
4.	Mettre en oeuvre un usinage :	
	Sketchup CAO + Charlygraal v5 FAO	p6-21
5.	Régler les POP	p 22

1. Cas d'utilisation :

Utilisation d'un Charlyrobot déjà présent dans le laboratoire de technologie :

Comment se procurer le câble RS232 - USB

Utilisation d'un Charlyrobot acheté récemment chez un fournisseur :

Le fournisseur 4A propose le charlyrobot Charly4U à l'achat sur devis (autour des 9000€) avec le logiciel **visualCAM Xpress**. <u>Lien vers le fournisseur A4.</u>

La société **Mécanumérique** distribue les différents modèles de Charlyrobot. <u>Lien vers le</u> site de la société pour obtenir un devis.

Compatibilité des versions

RÉCAPITULATIF DE LA COMPATIBILITÉ CNC CHARLYROBOT / CHARLYGRAAL / VISUALCAM EXPRESS / VERSIONS WINDOWS

• Les anciennes machines CRA4 et CRA2 ainsi que les 4U et 2U avant les types 5 ne sont pas compatibles Windows 10 (même s'il arrive que cela fonctionne) ; elles nécessitent de conserver un ordinateur sous W7 ou antérieur

• Les machines Charly 4U et 2U à partir du type 5 sont compatibles Windows 10 avec CharlyGraal V V 5.1.0.3.9 et mise à jour 5.1.0.4.0

• Les machines vendues actuellement sont compatibles Windows 10 et 11 et livrées avec la bonne version de licence VisualCAM Express

• La mise à jour de CharlyGraal pour les anciennes machine est facturée 231 €

Modèles	Types	Compatibilité	Version Graal
CRA4 - CRA2 Charly 4U - Charly 2U	1 à 10 1 - 2 - 3	Windows 7	Charlygraal Maxi 5.0.0.6
Charly 4U - Charly 2U	4 Si bouton vert clignote à la MST Si bouton vert allumé fixe à la MST	Windows 7 Windows 7	Charlygraal Maxi 5.1.0.39 Charlygraal V 5.0.0.6
Charly 4U - Charly 2U	5 à 10	Windows 7	Charlygraal V 5.1.0.3.9 (Suffit pour Windows 7)
		Windows 10	Charlygraal avec Maj 5.1.0.4.0 Pour Windows 10
		Windows 10 et Windows 11	Licence VisualCAM 2021 Version Express

Tableau des compatibilités Windows et versions de logiciels/licences

2. Description du matériel

Description du Charlyrobot

- Course XYZ 310 x 220 x 160 mm (Charly4U)
- Structure acier très rigide
- Double guidage par rails prismatiques en acier rectifié avec patin à recirculation de bille
- Graisseur intégré sur chaque axes
- Interpolation 3 axes dynamiques
- Changement d'outil et prise d'origine aisés, rapides et fiables, grâce au capteur d'outil
- Visibilité à 180°
- Usinage 2D et 3D

Caractéristiques techniques

	darly s	conversion of the second se
	Charly2U	Charly4U
Course Axe X en mm	600	310
Course Axe Y en mm	420	220
Course Axe Z en mm	280	160
Dimension de la table en mm	640 x 680	375 x 320
Architecture	Portique fixe avec table mobile en Y	Portique fixe avec table mobile en Y
Vitesse maximum	100 mm/s	100 mm/s
Longueur en mm	985	620
Profondeur en mm	1300	850
Hauteur en mm	1070	730
Poids en kg	170	81

Mettre en oeuvre un usinage avec Charlygraal v5 - CAO et FAO

Charlygraal (GCFAO) comporte deux modules distincts et reliés entre eux. Le module de CAO pour dessiner les pièces et le module de FAO pour configurer les usinages.

Gpilote quant à lui est le module de pilotage de charlyGRAAL. Il a pour fonction principale de récupérer les fichiers d'usinage que vous avez générés dans le module de FAO et de les envoyer à la machine via la commande numérique.

Étape 1. Dessiner une esquisse avec le module CAO

Nous vous proposons de découvrir les fonctions principales du module CAO par l'exemple, en dessinant une télécommande compatible avec la carte micro:bit.

Création de l'esquisse et du brut

Esquisser une courbe

Choisir l'icône courbe : 🖊 et dessiner librement la zone de préhension de la télécommande.

Réaliser une symétrie axiale

Tracer des segments

Tracer des perçages

Chaîne de côte

Réaliser la cotation

Etape 2. Configurer un usinage avec le module FAO

Sélectionner le contour

Passer au module CFAO pour configurer l'usinage.

- sélection des contours
- choix des outils, des profondeurs de coupe
- choix des vitesses d'avance...

Configurer le contournage extérieur

Choix de l'outil	? 🛛
Sélectionnez un outil	
Outils à graver Outils à fraiser	
12 Fraise diamantaire 1 mm	
14 Fraise 2 tailles D=2mm	
15 fraise 2 tailles D=3.17mm	
16 Fraise 2 tailles D=6mm courte	
17 Fraise 2 tailles D=6mm longue	
18 Fraise boule D=3mm	

Choisir une fraise 2 tailles de 2mm ou 3mm en fonction.

Trajectoire d'usinage ?
Vous êtes en mode "contournage extérieur" Le parcours d'outil généré sera tel que l'outil contourne le(s) dessin(s) sélectionné(s) par l'extérieur.
Profondeur dusinage II + mm. Découpe
Centre outil 3D
Contournage © Extérieur O Intérieur
Fonctions avancées
Aide Précédent Suivant Annuler

Cliquez sur découpe pour que la profondeur s'ajuste à 10mm

Choisir un contournage extérieur pour que les dimensions obtenues correspondent exactement aux dimensions dessinées.

Paramètres de coupe	<u>?</u> 🔀
En fonction de l'outil et du m l'expert vous propose les valeurs	natériau, s suivantes:
Vitesse de broche	'8000' 💌 tr / min
Vitesse d'avance	10 mm/s
Vitesse de descente	10 mm/s
Profondeur de passe maximum	4 mm
Enregistrer ces valeurs pour l'outil et le matériau courant Aide Précédent	Valeurs par défaut

Réduire la vitesse d'avance.

Sur une machine ancienne, dont le plateau martyr a bien joué son rôle, ne pas hésiter à réduire la vitesse d'avance pour limiter les efforts et éviter le décollement de la pièce du plateau.

Profondeur de passe.

Ajuster la profondeur de passe pour accélérer l'usinage (jusqu'à 10mm en 1 passe) ou réduire les efforts sur la pièce (3 mm en 4 passes ou 4 mm en 3 passes).

Le décollage de la plaque risquant de casser l'outil, ne pas hésiter à jouer la sécurité en réduisant les efforts de coupe. Le ralentissement de l'usinage induit par les réglages, est négligeable sur les profils simples usinés en classe.

Sélectionner les perçages

Configurer les contournages intérieurs

Choix de l'outil	? 🛛
Sélectionnez un outil	
Outils à graver Outils à fraiser	
12 Fraise diamantaire 1 mm	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
14 Fraise 2 tailles D=2mm	
15 fraise 2 tailles D=3.17mm	
16 Fraise 2 tailles D=6mm courte	
17 Fraise 2 tailles D=6mm longue	

Quand les perçages sont d'un diamètre supérieur à celui de la fraise installée sur la broche, il est préférable de les réaliser en contournage avec la fraise. Ceci permet d'éviter un changement d'outil fastidieux.

Choisir un contournage intérieur pour que le diamètre des trous soit exactement celui dessiné.

Paramètres de coupe		? 🛛
En fonction de l'outil et du ma l'expert vous propose les valeurs	atériau, suivantes:	1
Vitesse de broche	'8000' 💌	tr / min
Vitesse d'avance	10	mm/s
Vitesse de descente	10	mm/s
Profondeur de passe maximum	3	mm
Enregistrer ces valeurs pour l'outil et le matériau courant		leurs par défaut)
Aide Précédent	Terminé	Annuler

Simuler et générer le fichier d'usinage

Étape 3. Préparer le brut et le positionner sur le plateau martyr

Il est possible de découper le brut d'usinage avec la cisaille guillotine du laboratoire. Cependant dans l'exemple, le brut a une épaisseur de 10mm, incompatible avec cet équipement.

Il est important d'ajuster la quantité de double face en fonction de l'usure du plateau martyr et des paramètres de coupe (plus ou moins d'efforts transmis au brut d'usinage).

Coller le brut à l'origine pièce

Étape 4. Transférer vers le module Gpilote, simuler et usiner.

Après avoir généré le fichier d'usinage, le module Gpilote se lance automatiquement si vous avez le bon câble, la bonne version de charlyrobot et/ou le bon ordinateur. (voir partie *1. Cas d'utilisation*)

Nettoyer le plateau...

jeter les chutes...

retirer la pièce du plateau.

Mettre en oeuvre un usinage : Sketchup CAO Charlygraal v5 FAO

Étape 1. Dessiner l'esquisse dans SketchUp

SketchUp permet de dessiner une esquisse de la télécommande très facilement. Il n'est pas nécessaire d'ajouter de la matière. Seul un contour fermé suffit.

Étape 2. Installer le plug-in DXF Fenêtre Aide Palette par défaut > 4 Gérer les palettes... Nouveau plateau... Infos sur le modèle Préférences 3D Warehouse Extension Warehouse Installer l'extension Gestionnaire d'extensions Console Ruby Options du composant Textures photographiques

河 Ouvrir				×
\leftrightarrow \rightarrow \checkmark \uparrow \blacklozenge \diamond Ce	PC > Téléchargements	√ Č	Rechercher dar	ns : Télécharge 🔎
Organiser 🔻 Nouveau	dossier			= • • •
A	Nom	М	odifié le	Туре
X Acces rapide	CharlyGraal v5	12	/12/2022 15:35	Dossier de fichiers
💻 Ce PC	junior-ssl-master	20	/01/2022 13:45	Dossier de fichiers
📃 Bureau	💼 Obiets 3D - Raccourci	22	/05/2022 09:45	Raccourci
Documents	skp_to_dxf.rbz	14	/12/2022 15:37	Fichier RBZ
Images	📲 Vidéos Raccourci	11	/06/2021 13:02	Raccourci
Musique				
Dbjets 3D				
- Téléchargement				
Vidéos				
Windows (C:)				
Lecteur USB (D:)	L			
Cectedi 000 (01)	<			>
Nom	du fichier: skp to dxf.rbz	~	Fichiers Ruby	(*.rbz) ~
			Ouvrir	Annuler

Cliquez ici pour télécharger le plugin DXF

Étape 3. Exporter le fichier DXF

Grouper l'esquisse et allez au menu : Fichier / Export to DXF or STL

S ever	mple-telec	-sketchup -	Sketchlin	Make 2017							
Fichier	Édition	Affichage	Caméra	Dessiner	Outils	Fenêtre	Aide				
No	ouveau					`trl+N			0	A1	
0	ivrir					trl+0	PI		10	Fill (*	9 9
-					-						
En	registrer				(Ctrl+S					
En	registrer so	ous									
En	registrer u	ne copie sou	JS				$\overline{}$		$\overline{}$		
En	registrer co	omme mod	èle type								
Re	venir									\sim	
En	voyer sur l	LayOut (Pro	uniqueme	nt)						1	
Gé	oposition					>	٢				
3D	Warehous	se				>					
Im	porter						<u>ا ۲</u>			A	
Exp	porter					>	L.			— <u> </u>	
Co	onfiguratio	n de l'impre	ssion								
Exp	port to DXI	F or STL								>	
Ex	port STL							_	_		
Ар	erçu avanı	t impression									
Im	primer				0	Ctrl+P					
Gé	nérer un ra	apport (Ve	rsion Pro u	niquement)						

Export units	×	Choose which entities to export	×
Export unit:	Millimeters Annuler	Export to DXF options polyface mesh OK A polyface mesh polylines triangular mesh	•

Choisir l'unité en millimètre et l'option polylignes.

Nommer le fichier : nom.dxf

Étape 4. Importer le fichier DXF dans Gcfao

Lancer GCFAO et choisir le module CAO.

Dans le menu fichier, choisir l'option ouvrir.

Choisir le type de fichier DXF

Étape 5. Configurer l'usinage

Le profil est importé dans GCFAO. Il ne reste plus qu'à configurer l'usinage comme dans le *chapitre 3 page 11 avec le module FAO*.

6. Régler les POP

Pour réaliser la prise d'origine pièce (POP) il faut accéder au tableau de bord de la CFAO.

La prise d'origine pièce consiste à venir talonner le plateau martyr en X, Y et Z en tenant compte ensuite de l'épaisseur de la pièce.

Réglage des POP :

