Cours du vendredi 27 03

Bonjour à tous!

Comment allez vous depuis mardi? La famille va bien? Vous arrivez à travailler et vous détendre? Bon, la situation va encore durer...patience et surtout restez vigilants!

Et maintenant : au boulot !!

Sujets A et E

Vous avez éprouvé des difficultés à faire ces exercices ?

Faites le point p 237 pour contrôler vos connaissances sur les bases du cours- envoyez moi un mail, on peut se retrouver pour une séance d'AP

Je vous enverrai un mail via lycée connecté au sujet de votre travail avec la correction (que je viens de mettre sur Discord)

Vous pouvez vous entraîner en faisant les exercices 130-131 et sujet B pour la semaine prochaine.

Aujourd'hui, nous allons avancer le cours...

Cours III.Applications

 la page du III n'était pas rédigée, dans la précipitation du confinement, je vous l'ai photocopiée. Je l'ai reprise et actualisé le cours (en pdf)

On a vu et travaillé

- 1) calculs d'angles
- 2) théorème d'Al Kashi

Voyons maintenant

3) caractérisation des cercles

cette partie avec 4) correspondent au cours « géométrie repérée » du livre p 247

3) Caractérisation d'un cercle

a) Équation d'un cercle dans un repère orthonormé

Soit A un point du plan et r un réel positif. Le cercle C de centre A et de rayon r est l'ensemble des points M du plan tels que $\overrightarrow{AM}^2 = r^2$

Preuve:

Soit M un point du plan . $M \in C \Leftrightarrow AM = r \Leftrightarrow AM^2 = r^2 ...$

APPLICATION: ÉQUATION D'UN CERCLE DE CENTRE ET DE RAYON DONNÉS

On se place dans un repère orthonormal $(O; \vec{i}, \vec{j})$. Soit $A(x_0; y_0)$, un réel positif r et C le cercle de centre A et de rayon r.

Pour tout point M(x; y) du plan,

On a alors
$$\overline{AM} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$
 et $\overline{AM}^2 = |x - x_0|^2 + |y - y_0|^2$

Le cercle C est donc l'ensemble des points M(x; y) du plan tels que $(x - x_0)^2 + (y - y_0)^2 = r^2$

Attention,

En développant $|x-x_0|^2 + |y-y_0|^2 = r^2$ (trouvé en A) on obtient une équation de la forme $x^2 + y^2 + 2ax + 2by + c = 0$ (où a, b et c sont des réels), mais réciproquement une équation de cette forme ne représente pas toujours un cercle.

$$x^{2} + y^{2} - x - 3y + 3 = 0$$

$$(x^{2} - x) + (y^{2} - 3y) + 3 = 0$$

$$(x - \frac{1}{2})^{2} - \frac{1}{4} + (y - \frac{3}{2})^{2} - \frac{9}{4} + 3 = 0$$

$$(x - \frac{1}{2})^{2} + (y - \frac{3}{2})^{2} = -\frac{1}{2}$$

Ce qui est impossible ; l'ensemble des points vérifiant cette relation est donc l'ensemble vide.

➤ Méthode : Dans un repère orthonormé, déterminer l'équation d'un cercle de centre et rayon donnés

Dans un repère orthonormé A(2;1), déterminer une équation du cercle de centre A et de rayon 3.

Capacité 3 p 251

Méthode : Dans un repère orthonormé, déterminer l'équation d'un cercle de centre et rayon donnés

Dans un repère orthonormé A(2;1), déterminer une équation du cercle de centre A et de rayon 3.

Capacité 3 p 251

<u>Réponse</u>

Le cercle est l'ensemble des points de coordonnés (x;y) vérifiant $(x-2)^2 + (y-1)^2 = 9$ soit $x^2 - 4x + y^2 - 2y - 4 = 0$

➤ Méthode : Identifier l'équation d'un cercle

Dans un repère orthonormé, déterminer si l'équation suivante est celle d'un cercle, si oui, donner les éléments caractéristiques

a)
$$x^2 - 2x + y^2 + 3 = 0$$

b)
$$x^2 - 2x + y^2 - 6y + 9 = 0$$

l'idée est d'identifier des « débuts » d'identités remarquables du type $(x - x_0)^2$ et $(y - y_0)^2$

Capacité 4 p 252

➤ Méthode : Identifier l'équation d'un cercle

Dans un repère orthonormé, déterminer si l'équation suivante est celle d'un cercle, si oui, donner les éléments caractéristiques

a)
$$x^2 - 2x + y^2 + 3 = 0$$

b)
$$x^2 - 2x + y^2 - 6y + 9 = 0$$

l'idée est d'identifier des « débuts » d'identités remarquables du type $(x - x_0)^2$ et $(y - y_0)^2$

Capacité 4 p 252

Réponse

a) $x^2 - 2x$ est le début de l'identité remarquable $(x - 1)^2$

or
$$(x-1)^2 = x^2 - 2x + 1$$
 donc $x^2 - 2x = (x-1)^2 - 1$

ainsi,
$$x^2-2x+y^2+3=0 \Leftrightarrow (x-1)^2-1+y^2+3=0 \Leftrightarrow (x-1)^2+y^2=-2$$

-2 < 0 et $(x - 1)^2 + y^2 \ge 0$. Cette équation est l'ensemble vide.

b)
$$x^2-2x+y^2-6y+9=0 \Leftrightarrow (x-1)^2-1+(y-3)^2-9+9=0 \Leftrightarrow (x-1)^2+(y-3)^2=1=1^2$$
 cet ensemble est le cercle de centre A(1;3) et de rayon 1

Exercices 22 à 34 p 255

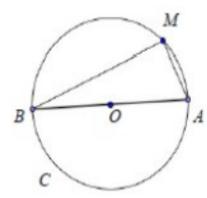
V

b) Cercle de diamètre donné

Propriété :

Soit A et B deux points distincts du plan.

La cercle C de diamètre [AB] est l'ensemble des points M du plan tels que $\overline{MA} \cdot \overline{MB} = 0$



Preuve:

Comme vous le savez depuis longtemps, le cercle C, privé des points A et B, est l'ensemble des points M du plan tels que le triangle MAB est rectangle en M, c'est à dire l'ensemble des points M tels que $MA \cdot \overline{MB} = 0$.

D'autre part, si M = A ou M = B, alors $\overline{MA} = \vec{0}$ ou $\overline{MB} = \vec{0}$ et on a encore $\overline{MA} \cdot \overline{MB} = 0$

APPLICATION: ÉQUATION D'UN CERCLE DE DIAMÈTRE DONNÉ

Étude d'un exemple :

On se place dans un repère orthonormal $(O; \vec{i}, \vec{j})$.

Déterminons une équation du cercle C de diamètre [AB] avec A(-1;3) et B(2;2).

Soit M(x; y) un point du plan.

On a
$$M \in C \Leftrightarrow \overline{MA} \cdot \overline{MB} = 0$$

Or
$$\overline{MA} \begin{pmatrix} -1-x \\ 3-y \end{pmatrix}$$
 et $\overline{MB} \begin{pmatrix} 2-x \\ 2-y \end{pmatrix}$

Ainsi
$$M \in C \Leftrightarrow (-1-x)(2-x)+(3-y)(2-y)=0 \Leftrightarrow x^2+y^2-5y+4=0$$

 Pour continuer à travailler ces notions , je vous propose de faire les exercices suivants

22-23 p 255 13-14-18p254

- Rappels Sujet B 130 et 131 p 236 pour vendredi prochain
- Une courte vidéo pour votre se détendre :
- https://www.youtube.com/watch?v=n0lpmCzL0I0
- A lundi, passez un bon WE!