L'algorithmique et la programmation au lycée

En cette rentrée scolaire, l'algorithmique et la programmation deviennent l'une des quatre parties du <u>programme de mathématiques de la classe de seconde</u>, ce qui implique des évolutions dans les pratiques d'enseignement. Cette lettre présente quelques informations susceptibles d'éclairer ces changements.

1. Le choix de l'outil de programmation

Le programme précise que « le choix du langage se fera parmi les langages interprétés, concis, largement répandus, et pouvant fonctionner dans une diversité d'environnements ». Comme cela a été présenté dans les formations mises en œuvre à la fin de la précédente année scolaire, le langage *Python* répond parfaitement à ces objectifs. Il est donc essentiel qu'il puisse être utilisé dans tous les lycées.

Pour l'installation, le choix pourra par exemple se porter sur <u>EduPython</u>, qui est une distribution clé en main, complète et portable pour programmer sous un environnement *Python 3*. D'autres exemples de distribution, ainsi que des tutoriels pour apprendre à utiliser le langage *Python*, sont proposés sur la page du site académique *Débuter avec le langage Python*.

2. La continuité entre le collège et le lycée

L'algorithmique et la programmation constituent une part substantielle des <u>programmes de collège</u>. Les collégiens ont donc pratiqué des activités sur ce thème, notamment avec le logiciel <u>Scratch</u>. Ce logiciel peut tout à fait être utilisé par les élèves de seconde en début d'année pour faire la transition avec *Python*. Plus généralement, il est essentiel de s'appuyer sur les acquis des élèves de collège pour aborder ce thème en lycée.

3. Ressources pédagogiques

Le site Eduscol a publié un <u>document ressource sur l'enseignement de l'algorithmique et de la programmation en lycée</u>. Il présente notamment le langage *Python* ainsi que des exemples d'activités en classe.

Des exemples d'activités pour la classe sont d'ores et déjà présents sur <u>la page dédiée du site</u> <u>académique</u>, avec notamment un exemple d'évaluation diagnostique et des activités de transition de *Scratch* à *Python*. Cette page sera rapidement et progressivement enrichie dans les mois qui viennent.

4. Formations

Comme indiqué dans la lettre de rentrée, <u>l'offre de formation en mathématiques</u> comporte deux stages de deux jours chacun.

Le premier stage, <u>Algorithmique et programmation au lycée</u>, se déroulera entre novembre et janvier et s'adresse à des enseignants débutants ou ayant des connaissances modestes sur le langage *Python*. Il permettra de parcourir l'ensemble des notions en lien avec le programme de seconde, à un niveau simple et accessible à tous.

Le second stage, <u>Programmation avancée en Python</u>, se déroulera après le stage précédent, entre janvier et avril. Il s'adresse à des enseignants possédant déjà quelques connaissances de base en *Python* et souhaitant les approfondir.

Il est tout à fait possible de participer aux deux stages. Suite aux nombreuses candidatures, leurs capacités d'accueil vont être augmentées pour répondre à l'ensemble des demandes. Les inscriptions doivent se faire impérativement <u>avant le 29 septembre</u>.

5. L'évolution des sujets du baccalauréat

Dans un objectif de simplicité et de cohérence, il est proposé dès à présent de faire évoluer l'écriture des algorithmes dans les sujets de baccalauréat, conformément aux principes suivants :

- suppression de la déclaration des variables, les hypothèses faites sur les variables étant précisées par ailleurs ;
- suppression des entrées-sorties;
- simplification de la syntaxe, avec le symbole ← pour l'affectation.

Les exemples qui suivent illustrent ces principes sur des sujets de baccalauréat de la session 2017 et montrent qu'ils facilitent la lecture sans changement de fond sur l'algorithmique.

BAC ES 2017

Recopier et compléter l'algorithme de façon qu'il affiche le montant total des cotisations de l'année 2017.

Variables S est un nombre réel

N est un entier

U est nombre réel

Initialisation S prend la valeur 0

U prend la valeur 900 Pour N allant de 1 à 12 :

Affecter à S la valeur ...

Affecter à U la valeur 0,75 U + 12

Fin Pour

On propose simplement un changement de forme : suppression des étiquettes « Variables » et « Initialisation », suppression de la déclaration des variables, remplacement de la syntaxe d'une affectation.

$$S \leftarrow 0$$
$$U \leftarrow 900$$

Pour N allant de 1 à 12

$$S \leftarrow \cdots$$

$$U \leftarrow 0.75 \ U + 12$$

Fin Pour

On propose de supprimer la déclaration des

BAC S 2017

On considère l'algorithme suivant :

Variables λ est un réel positif

S est un réel strictement compris entre 0 et

1

Initialisation Saisir S

 λ prend la valeur 0

 λ prend la valeur $\lambda + 1$

Fin Tant que

Sortie Afficher λ

faites sur les variables, de simplifier la syntaxe, de renoncer aux entrées sorties.

On considère l'algorithme suivant, où la variable S

variables, mais que l'énoncé précise les hypothèses

On considère l'algorithme suivant, où la variable *S* désigne un réel de l'intervalle]0,1[.

$$\begin{array}{l} \lambda \leftarrow 0 \\ \text{Tant que } 1 - \frac{\lambda + 1}{\mathrm{e}^{\lambda}} < S \text{ faire} \\ \lambda \leftarrow \lambda + 1 \\ \text{Fin Tant que} \end{array}$$

a. Si la variable S contient la valeur 0,8 avant l'exécution de cet algorithme, que contient la variable λ à la fin de son exécution ?

b. Quel est le rôle de cet algorithme?

a. Quelle valeur affiche cet algorithme si on saisit la valeur S = 0.8?

b. Quel est le rôle de cet algorithme ?

BAC STI2D 2017

Voici un algorithme qui, lorsque l'on saisit un nombre *N* non nul de jours écoulés, calcule et affiche la masse de gaz restant dans le système.

Variables N: un nombre entier naturel

k: un nombre entier naturel

u : un nombre réel

Entrée Saisir N

Initialisation *u* prend la valeur 660 Traitement Pour *k* allant de 1 à . . .

u prend la valeur . . .

Fin pour

Sortie Afficher *u*

On propose la suppression de la déclaration de variables et des entrées-sorties, la simplification de la syntaxe.

Voici un algorithme qui calcule la masse u de gaz restant dans le système après un nombre entier strictement positif N de jours écoulés.

$$u \leftarrow 660$$

Pour k allant de 1 à ... $u \leftarrow \cdots$
Fin pour

Recopier et compléter cet algorithme.

Recopier et compléter la partie relative au traitement de cet algorithme.

BAC STLbio 2017

Soit l'algorithme suivant :

Variables *n* entier naturel

C réel

Initialisation Affecter à n la valeur 0

Affecter à C la valeur 3,4

Traitement Tant que C est supérieur à 1

Affecter à *n* la valeur *n*+1 Affecter à C la valeur 0.8×C

Fin tant que

Sortie Afficher *n*

Quelle valeur affiche l'algorithme ? Interpréter le résultat dans le contexte de cet exercice.

BAC STMG 2017

On considère l'algorithme suivant :

Variables n est un nombre entier

u et k sont des nombres réels

Traitement Saisir k

n prend la valeur 0

u prend la valeur 3 081,45

Tant que u < k Faire

u prend la valeur 1,04 × u n prend la valeur n + 1

Fin Tant que Afficher n

Si l'on choisit k = 4 000, quelle valeur affichera cet algorithme ? Interpréter ce résultat dans le contexte étudié.

On propose la suppression de la déclaration de variables et des entrées-sorties, la simplification de la syntaxe.

Soit l'algorithme suivant :

$$\begin{array}{c} n \leftarrow 0 \\ \mathcal{C} \leftarrow 3,4 \\ \text{Tant que } \mathcal{C} \geq 1 \\ \quad n \leftarrow n+1 \\ \quad \mathcal{C} \leftarrow 0,8 \times \mathcal{C} \end{array}$$

Fin Tant que

Quelle est la valeur de la variable n à la fin de l'exécution de l'algorithme ? Interpréter le résultat dans le contexte de l'exercice.

On propose la suppression de la déclaration de variables et des entrées-sorties, la simplification de la syntaxe. Par cohérence d'un sujet à l'autre on propose de ne garder que : Tant que ...

plutôt que : Tant que ... faire

$$\begin{array}{l} n \leftarrow 0 \\ u \leftarrow 3081,\!\!45 \\ \text{Tant que}\, u < k \\ u \leftarrow 1,\!\!04 \times u \\ n \leftarrow n+1 \end{array}$$
 Fin Tant que

Quelle est la valeur de la variable n à la fin de l'exécution de cet algorithme si la valeur de la variable k en début d'exécution est égale à 4000 ? Interpréter ce résultat dans le contexte étudié.